Article: Microbial Ecology

Microbial Enzymatic Activities and Community-Level Physiological Profiles (CLPP) in Subsoil Layers Are Altered by Harvest Residue Management Practices in a Tropical Eucalyptus … F Maillard, V Leduc, C Bach, JL de Moraes Gonçalves, FD Androte, … Microbial Ecology, 1-6

Abstract

Harvest residue management is a key issue for the sustainability of Eucalyptus plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in Eucalyptus plantations. We studied the effects of harvest residue management (branches, leaves, bark) of Eucalyptus grandis trees on soil enzymatic activities and community-level physiological profiles in a Brazilian plantation. We measured soil microbial enzymatic activities involved in OM decomposition and we compared the community level physiological profiles (CLPP) of the soil microbes in WTH and SOH plots. WTH decreased enzyme activities and catabolic potential of the soil microbial community. Furthermore, these negative effects on soil functional diversity were mainly observed below the 0–5 cm layer (5–10 and 10–20 cm), suggesting that WTH can be harmful to the soil health in these plantations.

Article: New Phytologist

Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. Y Chang, A Desiro, H Na, L Sandor, A Lipzen,…New Phytologist

Summary

Endogonales (Mucoromycotina), composed of Endogonaceae and Densosporaceae, is the only known non‐Dikarya order with ectomycorrhizal members. They also form mycorrhizal‐like association with some non‐Spermatophyte plants. It has been recently proposed that Endogonales were among the earliest mycorrhizal partners with land plants. It remains unknown whether Endogonales possess genomes with mycorrhizal‐lifestyle signatures and whether Endogonales originated around the same time as land plants did.

We sampled sporocarp tissue from four Endogonaceae collections and performed shotgun genome sequencing. After binning the metagenome data, we assembled and annotated the Endogonaceae genomes. We performed comparative analysis on plant‐cell‐wall‐degrading‐enzymes (PCWDEs) and small secreted proteins (SSPs). We inferred phylogenetic placement of Endogonaceae and estimated the ages of Endogonaceae and Endogonales with expanded taxon sampling.

Endogonaceae have large genomes with high repeat content, low diversity of PCWDEs, but without elevated SSP/secretome ratios. Dating analysis estimated that Endogonaceae originated in the Permian‐Triassic boundary and Endogonales originated in the mid‐late Silurian. Mycoplasma‐related endobacterium sequences were identified in three Endogonaceae genomes.

Endogonaceae genomes possess typical signatures of mycorrhizal lifestyle. The early origin of Endogonales suggests that the mycorrhizal association between Endogonales and plants might have played an important role during the colonization of land by plants.

Article: Biochimica et Biophysica Acta

The thioredoxin-mediated recycling of Arabidopsis thaliana GRXS16 relies on a conserved C-terminal cysteine F Zannini, A Moseler, R Bchini, T Dhalleine, AJ Meyer, N Rouhier, … Biochimica et Biophysica Acta (BBA)-General Subjects

Abstract

Background

Glutaredoxins (GRXs) are oxidoreductases involved in diverse cellular processes through their capacity to reduce glutathionylated proteins and/or to coordinate iron‑sulfur (FeS) clusters. Among class II GRXs, the plant-specific GRXS16 is a bimodular protein formed by an N-terminal endonuclease domain fused to a GRX domain containing a 158CGFS signature.

Methods

The biochemical properties (redox activity, sensitivity to oxidation, pKa of cysteine residues, midpoint redox potential) of Arabidopsis thaliana GRXS16 were investigated by coupling oxidative treatments to alkylation shift assays, activity measurements and mass spectrometry analyses.

Results

Activity measurements using redox-sensitive GFP2 (roGFP2) did not reveal any significant glutathione-dependent reductase activity of A. thaliana GRXS16 whereas it was able to catalyze its oxidation in the presence of glutathione disulfide. Accordingly, Arabidopsis GRXS16 reacted efficiently with oxidized forms of glutathione, leading to the formation of an intramolecular disulfide between Cys158 and the semi-conserved Cys215, which has a midpoint redox potential of – 298 mV at pH 7.0 and is reduced by plastidial thioredoxins (TRXs) but not GSH. By promoting the formation of this disulfide, Cys215 modulates GRXS16 oxidoreductase activity.

Conclusion

The reduction of AtGRXS16, which is mandatory for its oxidoreductase activity and the binding of FeS clusters, depends on light through the plastidial FTR/TRX system. Hence, disulfide formation may constitute a redox switch mechanism controlling GRXS16 function in response to day/night transition or oxidizing conditions.

General significance.

From the in vitro data obtained with roGFP2, one can postulate that GRXS16 would mediate protein glutathionylation/oxidation in plastids but not their deglutathionylation.

Article: Antioxidants and Redox signaling

Redox homeostasis in photosynthetic organisms: novel and established thiol-based molecular mechanisms. M Zaffagnini, S Fermani, CH Marchand, A Costa, F Sparla, N Rouhier, … Antioxidants and Redox Signaling

Redox homeostasis consists of an intricate network in which reactive molecular species (RMS), redox modifications and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e. redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. Lastly, the physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses.

Article: Nature Ecology & Evolution

  1. C Murat, T Payen, B Noel, A Kuo, E Morin, J Chen, A Kohler, K Krizsán, … Nature Ecology & Evolution, 1

    Abstract

    Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.

Article: Oecologia

Aboveground overyielding in a mixed temperate forest is not explained by belowground processes A Fruleux, MB Bogeat-Triboulot, C Collet, A Deveau, L Saint-André, … Oecologia, 1-11

Abstract

The relationship between forest productivity and tree species diversity has been described in detail, but the underlying processes have yet to be identified. One important issue is to understand which processes are at the origin of observed aboveground overyielding in some mixed forests. We used a beech–maple plantation exhibiting aboveground overyielding to test whether belowground processes could explain this pattern. Soil cores were collected to determine fine root (FR) biomass and vertical distribution. Correlograms were used to detect spatial arrangement. Near-infrared reflectance spectroscopy was used to identify the tree species proportion in the FR samples and spatial root segregation. An isotopic approach was used to identify water acquisition patterns. The structure and the composition of the ectomycorrhizal fungal community were determined by high-throughput sequencing of DNA in the soil samples. We found no spatial pattern for FR biomass or for its vertical distribution along the gradients. No vertical root segregation was found, as FR density for both species decreased with depth in a similar way. The two species displayed similar vertical water acquisition profiles as well, mainly absorbing water from shallow soil layers; hence, niche differentiation for water acquisition was not highlighted here. Significant alterations in the fungal community compositions were detected in function of the percentage of maple in the vicinity of beech. Our findings do not support the commonly suggested drivers of aboveground overyielding in species-diverse forests and suggest that competition reduction or between-species facilitation of belowground resource acquisition may not explain the observed aboveground overyielding.

Article: Antioxidants

Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron–Sulfur Cluster and Reduce NFU Proteins In Vitro. F Zannini, T Roret, J Przybyla-Toscano, T Dhalleine, N Rouhier, …Antioxidants 7 (10), 14

 Abstract:

In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure–function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron–sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein–protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.

Article: Environmental microbiology

First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass E Akroume, F Maillard, C Bach, C Hossann, C Brechet, N Angeli, B Zeller, … Environmental microbiology

Summary

Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15N/13C) as nutrient source, and a monoxenic mycorrhized pine experiment also, composed of labelled Postianecromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15N enrichments in all plant and fungal compartments. Interestingly, 13C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.

Article: Scientific reports

A rust fungal effector binds plant DNA and modulates transcription MB Ahmed, KCG dos Santos, IB Sanchez, B Petre, C Lorrain, MB Plourde, … Scientific Reports 8 (1), 14718

Abstract

The basidiomycete Melampsora larici-populina causes poplar rust disease by invading leaf tissues and secreting effector proteins through specialized infection structures known as haustoria. The mechanisms by which rust effectors promote pathogen virulence are poorly understood. The present study characterized Mlp124478, a candidate effector of M. larici-populina. We used the models Arabidopsis thalianaand Nicotiana benthamiana to investigate the function of Mlp124478 in plant cells. We established that Mlp124478 accumulates in the nucleus and nucleolus, however its nucleolar accumulation is not required to promote growth of the oomycete pathogen Hyaloperonospora arabidopsidis. Stable constitutive expression of Mlp124478 in A. thalianarepressed the expression of genes involved in immune responses, and also altered leaf morphology by increasing the waviness of rosette leaves. Chip-PCR experiments showed that Mlp124478 associats’e with the TGA1a-binding DNA sequence. Our results suggest that Mlp124478 exerts a virulence activity and binds the TGA1a promoter to suppress genes induced in response to pathogen infection.